

Survey on Hadoop MapReduce Scheduling

Algorithms

1Pranoti K. Bone and 2A.M.Wade
1PG Student and 2Asst. Professor

1-2Computer Engineering Depatment, Smt. Kashibai Navale College of Engineering, Vadgaon(Bk), Pune, India.
pranotibone7@gmail.com adi.wade@gmail.com

Abstract— Mapreduce in hadoop is parallel processing. In modern world data centres
operate various MapReduce function in parallel, hence it is essential to furnish an effective
scheduling algorithm in order to optimize completion time required for these jobs. Hadoop
adapted FIFO scheduling as default scheduling algorithm but maybe this scheduling is not
powerful to fulfil the requirements of all jobs. So in this situation one should use alternate
scheduling algorithms. This study will incite other experience clients and designers to
conceive the details of certain scheduling, enable them to make the best decisions for their
certain research interests.

Index Terms— Hadoop, MapReduce, scheduling algorithm.

I. INTRODUCTION

Many big firms like Amazon, Facebook and Yahoo use Hadoop. Hiding the details of parallel processing,
including data distribution to processing nodes is possible just because of Hadoop [1]. There are the two main
component of Hadoop - 1.Hadoop Distributed file system (HDFS) 2.Hadoop MapReduce [2].
HDFS is called as block oriented file system shown in figure 1 [3]. Here every individual file is divided into
a block of 64MB. Further these blocks are stored within machines having cluster along with data storage
capacity. Every individual machine in the cluster is denoted as ‘DataNode’. Every file constitutes several
blocks which are not stored on the same machine .On block by block basis these target machines holding
each block are selected randomly. Hence in order to access certain file the co-operation of multiple machine
is required. Because of failure of any node in cluster problem of unavailability arises. HDFS cures this
problem by making copies of each block over number of machines, generally it is taken as 3.
NameNode is a single node in HDFS cluster. It not only manages file system namespace but also regulates
user access to files. DataNode helps to store data in block format within files. There are two functions are
performed by NameNode - 1. To map data block to DataNode 2. To manage file system. Operations like
opening, closing, renaming files and directories. In case of failure of NameNode machines, NameNode data
must be preserved. Numbers of copies of NameNode information are maintained on different machines.
Hence, in the event of crash it can be accessed by other nodes in cluster. These other nodes can be denoted as
secondary NameNode.
MapReduce was primarily suggested by Google in order to manage large scale web search applications.
MapReduce is signified as an effective programming approach because of advancement of machine learning,
data mining and search application in data centres. It includes following two data processing functions - 1)

Grenze ID: 01.GIJET.1.1.24
© Grenze Scientific Society, 2015

Grenze Int. J. of Engineering and Technology, Vol. 1, No. 1, January 2015

68

Map 2) Reduce.
Parallel Map functions are carried on input data which is divided into predetermined sized blocks and
generate intermediate output as a cluster of <key, value>pairs. These pairs are intermixed along with various
reduce tasks based on <key, value>pairs. Hadoop MapReduce has a master – workers like architecture means
it consists of one JobTracker i.e. master and various TaskTracker i.e. workers. The duty of separation from
input data and determination of TaskTracker depending on their network space to data source is entrusted
upon JobTracker .On the other hand TaskTracker have to submit periodic status report to their master i.e.
JobTracker through heartbeat message.

Fig.1. HDFS Architecture

TABLE I. MAPREDUCE I/O

Mapreduce I/O

Functions Input Output Directions

Map
(K1,V1)

(K2,V2) The input keys (K1,V1) is mapped to keys k of an intermediate format (K2,V2)
collection.

 Reduce (K2,V2) (K2,V2) Reduce a group of middle set values associated with K2 to smaller set of values.

In the event of task or worker failures, functions are relaunched on other nodes. The records of heartbeat
messages coming from TaskTracker are maintained by JobTracker in order to use them in task assignment. In
modern world data centres operate various MapReduce function in parallel, hence it is essential to furnish a
effective scheduling algorithm in order to optimize completion time required for these jobs. Nowadays
scheduler gives more attention to optimized, little theoretical understanding of scheduling problem subsists in
relation to MapReduce. Here we have scrutinized the scheduling algorithm for MapReduce and also
compared distinct scheduling algorithm [4][5][6] for MapReduce framework for Hadoop.

II. SCHEDULING IN HADOOP

A. Issues Of Schedulinng In Mapreduce
 Locality - Locality is the major issue of map-reduce scheduling. The distance between the

input data node and task-assigned node is termed as Locality. Lesser distance leads to lesser
data transfer cost. As compared to other scheduling constraints locality is considered as basic
approach. Because of limited bisection bandwidth of network locality is considered as very
critical issue affecting performance in shared cluster environment. Throughput of task
increases due to high locality. Node locality is defined as the processing of a task on a node

69

holding the data. In case of impossibility of achieving node locality, job is executed on the
same track called as rack locality. In case of nonfulfillment of locality Data transferring I/O
cost can greatly affect the execution because of shared bandwidth of network. In order to save
cost of network, jobs pursue the policy of assigning task to the nearer location.

 Synchronisation - The process of transmitting the intermediate output of the map function to
the reduce operation as input is also taken into account as a component which affect
performance is termed as synchronisation. Before initiating the sending of intermediate output
mappers have to wait for the completion of all the map processes. As map and reduce phases
are interdependent, a single node slows down the whole procedure by making other nodes wait
till completion. There are many components which degrades the synchronisation process. For
e.g. node failures miss-configuration, heterogeneity of cluster and serious overhead of I/O cost.

 Fairness - In many big enterprises like Yahoo, Facebook, Google several map-reduce jobs are
executed in the shared data warehouse of respective firm. As map-reduce function possess
heavy workload , it may rule the utilization of shared clusters, hence some short computation
tasks may not have.

B. Related Work
Hadoop uses various scheduling algorithms for task assignment. Many researchers are focusing on this issue.
Various scheduling algorithm are listed in table I.

TABLE II. VARIOUS SCHEDULING ALGORITHMS

Scheduling Algorithm Description Advantages Disadvantages

FIFO Scheduling First in first out – Oldest job
selected first by job tracker.

 The HOD virtual cluster
can be utilised in a
comparatively self-
directing way.

 It is also adjustable in
that it can dwindle when
the workload varies.

 When it has no running
function, it
automatically de
allocates node from
virtual cluster.

 It supplies greater
safety, with less sharing
of nodes.

 Because of lack of
dissension within the
nodes for multiple
clients’ job it enhance
the performance.

 Poor Locality
 Poor utility

 Size of the job or
priority are not given
any importance

 As the resources are
used by large jobs,
small jobs are
ignored.

Fair Scheduling A Process of allocating
resources to jobs in such a way
that every job will get almost
same proportions of resources.
When there is any slot vacant
the scheduler will assign this
slot to the job having huge job
deficit.

 Less complex
 Works well when both

small and large clusters
 Furnish fast response

time for small tasks
mixed with large tasks.

 It sets the bounds to the
number of associate jobs
in every job pull.

 Job size is
completely ignored.

 Does not examine
availability of
resources on fine-
grained basis.

Capacity Scheduling

[8]

The capacity scheduler grants
sharing huge cluster by
devoting each firm capacity
guarantee. In case of vacant
slots in certain JobTracker, the
scheduler will select a queue,
then select a job and at last
allocate this slot to a job.

Ensure guaranteed
access with the
potential to reuse
unused capacity and
prioritize jobs within
queues over large
cluster.

 The most complex
among three
schedulers.

 Does not consider
resource availability
on a fine-grained
basis.

70

Delay scheduling
[9][10]

Queue based scheduling
relaxing fairness for locality
enhancement. Although the first
slot we consider giving to a job
is unlikely to have data for it,
tasks finish so quickly that
some slot with data for it will
free up in the next few seconds

Simplicity of

scheduling

No particular

Dynamic priority

scheduling [11]

In order to balance current
workload it allows users to
enhance or diminish their queue
priorities.
Supports the capacity
distribution dynamically among
concurrent users based on
priorities of the users.
As per priorities of the users. It
helps the capacity distribution.

Configured easily. In the event of crash
of system all
incomplete low
priority processes
gets lost.

Deadline constraint
scheduling [12]

It concentrates on the deadline
constraint of task which denotes
the problem of deadline but
mainly helps in enhancing
system utilization.

Supports optimization
of hadoop
implementation.

Cost incurred for
each node should be
uniform.

Longest Approximate
Time to End
Scheduling [13]

LATE scheduler always
speculatively executes the task.
If any task works slowly so it is
very uncommon to continue
with the task processing. Task
is progress is very slow due to
some reasons like high CPU
load on the node, slow
background processes etc. All
tasks should be finished for
completion of the entire job.
The scheduler detects a slow
running task to launch another
equivalent task as a backup
which is termed as execution
relies implicitly on certain
assumptions:
a) Uniform Task progress on
nodes b) Uniform computation
at all nodes.

 Robust to node
heterogeneity.

 Considers node
heterogeneity while
determining where to run
speculative jobs.

 Rather than executing
task having slow
response time it
speculatively executes
only the jobs which will
enhance job response
time

 It does not divide map
slow nodes and
decrease slow nodes.

 The static manner of
computing the growth
of job results in poor

Self-Adaptive
MapReduce
Scheduling [14]

The process of SAMR algorithm
includes reading the historical
information and tuning parameters,
finding the slow tasks, finding the
slow TaskTracker, launching backup
tasks, collecting results and updating
the historical information.

Uses historical information to
tune weights of map and
reduce stages.

It does not consider that the
dataset sizes and the job
types can also affect the
stage weights of map and
reduce tasks.

Enhanced Self-
Adaptive MapReduce
Scheduling [15]

ESAMR scheduling algorithm also
considers the fact that slow tasks
extends the execution time of the
whole job and due to hardware
heterogeneity different amounts of
time are needed to complete the same
task on different nodes. ESAMR
records historical information for each
node as in case of SAMR and it adopts
a k-means clustering algorithm to
dynamically tune stage weight
parameters and to find slow tasks
accurately. ESAMR significantly
improves the performance of
MapReduce scheduling in terms of
estimating task execution time and
launching backup tasks

 Can identify slow tasks
more accurately.

 Improves the
performance in terms of
estimating task execution
time and launching
backup tasks.

 Little overhead due to
K-means algorithm.

 Allows only one
speculative copy of a
task to run on a node
at a time.

71

III. CONCLUSION

Now a day, the demand of Hadoop is greatly enhancing. Industry possess a large amount of data in large
number of data sets hadoop can be implemented. MapReduce is one of the most important parts of hadoop.
Here in this paper we have discussed many scheduling algorithms. In the scheduling of hadoop there are
several research channels. Future work includes development of scheduling algorithm for load balancing
strategy.

ACKNOWLEDGMENT

I would like to thank my respected Guide Prof. A. M. Wade for encouragement and support. I gratefully
acknowledge him for inculcating valuable basic knowledge of Big Data Hadoop, MapReduce in me. We are
also thankful to the department of Computer Engineering, Smt. Kashibai Navale College of Engineering,
Pune for providing us infrastructure facilities necessary for this work and moral support.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI ’04, pages 137–150,

2004.
[3] Hadoop Distributed File System, http://hadoop.apache.org/hdfs.
[4] V. Krishna Reddy, B. Thirumala Rao, LSS Reddy, “Research issues in Cloud Computing”, Global Journal

Computer Science & Technology Vol. 11, no. 11, June 2011,pp.70-76.
[5] Yang XIA†, Lei WANG1, Qiang ZHAO1, Gongxuan ZHANG2, “Research on Job Scheduling Algorithm in

Hadoop”, 2011.
[6] Stonebraker, M., “MapReduce and parallel DBMS: friends or foes?”, ACM, 2010.
[7] B. Thirumala Rao, N. V. Sridevi, V. Krishna Reddy, LSS.Reddy, “Performance Issues of Heterogeneous Hadoop

Clusters in Cloud Computing”, Global Journal Computer Science & Technology Vol. 11, no. 8, May 2011,pp.81-87.
[8] Hadoop’s Capacity Scheduler :http://hadoop.apache.org/core/docs/current/capacityscheduler.
[9] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica. “Delay

scheduling: a simple technique for achieving locality and fairness in cluster scheduling in EuroSys10”, Proceedings
of the 5th European conference on Computer systems, pages 265–278, New York, NY, USA, 2010. ACM.

[10] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,Khaled Elmeleegy, Scott Shenker, Ion Stoica, “Job
Scheduling for Multi-User MapReduce Clusters”, Electrical Engineering and Computer Sciences, University of
California at Berkeley, April 2009.

[11] Thomas Sandholm and Kevin Lai. “Dynamic proportional share scheduling in Hadoop in JSSPP”, 15th Workshop
on Job Scheduling Strategies for Parallel Processing, April, 2010.

[12] K. Kc and K. Anyanwu, "Scheduling Hadoop Jobs to Meet Deadlines", in Proc. CloudCom, 2010, pp.388- 392.
[13] M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica. Improving mapreduce performance in heterogeneous

environments. In OSDI’08: 8th USENIX Symposium on Operating Systems Design and Implementation, October
2008

[14] Quan Chen; Daqiang Zhang; Minyi Guo; Qianni Deng; Song Guo; , "SAMR: A Self-adaptive MapReduce
Scheduling Algorithm in Heterogeneous Environment,"(2010) Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on , vol., no., pp.2736-2743.

[15] Xiaoyu Sun, Chen He and Ying Lu “ESAMR: An Enhanced Self-Adaptive MapReduce Scheduling
Algorithm”(2012) IEEE 18th International Conference on Parallel and Distributed Systems.

